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Internal waves in a circular channel 
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The frequencies of the first four sloshing internal wave modes in two superposed 
fluid layers contained in a circular channel are calculated for two positions of 
the free surface and for various ratios of the depths of the two layers. Flow patterns 
are given for the first four sloshing modes for the case in which the fluids occupy 
a semicircular space and the depth of the upper layer is one-quarter of the radius. 

It is hoped that the results obtained will provide a guide for estimating the 
frequencies of sloshing internal wave modes in long lakes. 

1. Introduction 
It is well known that exact solutions for water waves in channels of variable 

depth are extremely few (Lamb 1932, pp. 442-450). For internal waves in super- 
posed layers each of uniform density, no exact solutions are known if the depth 
of the container is not uniform except the edge-wave solutions given by Yih 
(1965, p. 57; 1966). 

Internal waves occupy an important position in limnology, since lakes are 
thermally stratified most of the time. Limnologists generally use a model con- 
sisting of two superposed layers, each homogeneous in itself, to approximate the 
actual distribution of temperature and density. But, as stated above, non- 
uniformity of depth always presents difficulties surmountable only by resorting 
to numerical computations. 

In  order to provide some guide for limnologists we have carried out calcula- 
tions of the frequencies of the first four sloshing internal wave modes in two 
superposed fluid layers in a circular channel (see figure 1) for different ratios of 
the depths of the layers and for two positions of the free surface. Also, the flow 
patterns for the h s t  four sloshing modes are given for the case when the fluids 
occupy a semicircular space and the depth of the upper layer is one-quarter of 
the radius of the channel. 

The frequencies for the cases of an extremely shallow upper or lower layer 
have been obtained analytically by adapting the solutions of Budiansky (1960) 
for a homogeneous fluid to the present case. All the other calculations are 
numerical ones carried out by replacing the differential system governing internal 
waves by linear algebraic equations. 
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FIGURE 1. Definition sketch. 

2. The differential system 
We shall denote the density of the upper fluid by p1 and that of the lower fluid 

by pz. Since each layer is homogeneous, we shall assume the flow in each layer to 
be irrotational, and denote the velocity potential for the upper layer by $1 and 
that for the lower layer by q52. 

v2q5, = 0, v2q5, = 0, 
Then 

where v2 = a21ax2 + ayay=, 

x and y being Cartesian co-ordinates, with y measured in the vertical direction. 
The condition at the solid boundary of the channel is, for either layer, 

a$/& = 0, (2) 

where n is measured in a direction normal to the boundary. 

condition with the Bernoulli equation we get the free-surface condition 
At the free surface the pressure is constant. By combining the kinematic 

aa#,/at2 + g a#,/ay = o. 
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If we assume the exponential factor exp ( - i d )  for all perturbation quantities, 
this condition becomes 

in which the subscripts t and y indicate partial differentiation. 

(."I = 9$1y, (3) 

On the interface the kinematic condition is 

$1y = 4 2 y  (4) 

and the dynamic condition, obtained in a similar way to  (3), is 

G2(P292 -P191) = S(P2 - P1) 91,. (5) 

The differential system to be solved consists of (1)-(5), with v2 as the eigenvalue. 
In  our numerical calculations it is often convenient to use stream functions. 

In  terms of the stream functions $l and $2, with the subscript 1 indicating the 
upper layer and the subscript 2 indicating the lower layer, the differential system 
consists of the following equations : 

v2$1 = 0, V2$, = 0, (6) 

$l = 0 = $2 on the solid boundary, (7) 

a2$,, = g$l,y on the free surface, (8) 

$l = $2 on the interface, (9) 

(10) C2(P2 $2 - P1 $1)y = d P 2  --A) $1yy on the inteldhe. 

Conditions (8) and (10) are obtained by differentiating (3) and ( 5 )  with respect 
to x and using the Cauchy-Riemann equations, and (9) follows directly from (4) 
on using the Cauchy-Riemann equations. 

3. Asymptotic solutions for the special cases in which one layer is 
extremely thin 

We shall give some exact results for the extreme cases in which either the 
upper layer or the lower layer is exceedingly thin, which cannot be conveniently 
solved by numerical computation. These results will provide some check on the 
trend of the numerical results and some guidance as to  the curves representing 
them. For internal waves the free surface can be considered ftxed. 

For the case of an extremely thin upper layer, when the maximum total depth 
is fixed, the result is simply that for internal waves 

0. = 0. 

The reasoning is briefly as follows. Compare the case with the case of internal 
waves in a rectangular channel with the total depth equal to the maximum total 
depth in the circular channel, the upper-layer depth exactly equal to that for 
the case under consideration and the width equal to the width of the interface. 
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The cr for the circular channel can be shown to be less (Yih 1975) than that for 
the rectangular channel, for the interfaces are of the same width, the excess area 
occupied by the thin upper fluid in the circular channel over that in the rect- 
angular channel is negligibly small, whereas the domain of the lower fluid in 
the rectangular channel contains that in the circular channel. For internal 
waves in the rectangular channel the upper surface can be taken as flat, and the 
frequency is given, after a simple calculation using (i) ,  ( 2 ) ,  ( 4 )  and (5), by 

a2 = g; tanh kd,, 

where d, is the depth of the upper fluid, 

and 

s; = (AP/Pl) 9, AP = P2 -P1 

k = ( 2 n  + 1) n-/b or 2nn-/b, 

b being the width of the rectangular channel and n a positive integer. It is clear 
then that the c for the rectangular channel approaches zero as d, approaches 
zero, and afortiori the cr for the circular channel must approach zero. This 
calculation also illustrates the well-known fact that when either layer is thin 
we can replace g by gAp/(p for the thin layer), and ignore the existence of the deep 
layer. This fact will be recalled when we calculate cr for the case of a thin lower 
layer in the following paragraphs. 

For the case of an extremely thin lower layer, we note first that, as has been 
mentioned, when the lower layer is very thin the frequency of any internal wave 
mode is the same as that of the corresponding free-surface wave mode for a 
single layer (the thin lower layer), as though the upper fluid did not exist, if g 
is changed to 

g' = a 1  - p  g. (11) 

Thus to find the cr for the case of a very thin lower layer, we need to find only 
the cr for free-surface waves on that layer, but with g replaced by g'. 

P2 

For the first sloshing mode, we take 

q52 = 0 = -arc tan (x/y), 

which satisfies (1 1 )  and (12) .  On the free surface, where y = - b', we have, after 
some simple calculations and using (3), with 952 replacing 

g2 = g'/b', 

if terms O[(x/b')3] are neglected. Note that x'/b is small if the lower layer is thin, 
or a - b' < a = radius of circular channel. In  the limit, 

cr2 = g'/a. (12 )  

Solutions for higher modes can be obtained similarly. But the solutions for 
the modes can also all be obtained a t  once by adapting Budiansky's solutions 
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for a single thin layer, by merely replacing his g by our g‘. The long-wave equation 
used by Budiansky becomes, after replacement of 4, by # and g by g‘, 

where 

With g2  = 2a(a - b’) x2, (13) can be written as 

h, = (a2-x2)4-bf f (a-b‘)-x2/2a. 

which is Legendre’s equation. In  order not to have any singularities at 
it is necessary that 

n being an integer representing the mode. For n = 1, (15) gives (12), as expected. 

= 1, 

2a2alg’ = n(n + l ) ,  (15) 

4. Algebraic method for the numerical solutions 
When the differential system (1)-(5) is discretized by either a finite-difference 

or a fhite-element method, it reduces to an algebraic eigenvalue problem approxi- 
mating the original equations, but not the standard algebraic eigenvalue problem 

AX = AX. - (16) 

AX = ~ B x ,  (17) 

It is possible to reduce the differential system only to 

where A and B are constant matrices and A and x denote the eigenvalues and 
eigenvectors, respectively. When the variables on the free surface and interface 
are eliminated, the algebraic eigenvalue problem takes the form 

N(A)x = 0, (18) 

where the eigenvalue h appears nonlinearly in the elements of the matrix N. 
The dimension of N is smaller than that of A. Such an eigenvalue problem has 
been studied recently (Kublanovskaya 1970). Efficient algorithms are just being 
developed for its solution. 

For the algebraic formulation, subscripts are reserved for vector and matrix 
components. We shall denote the velocity potential in the domain D, of the 
lighter fluid by $(l)(x, y, t )  and that in the domain D, of the heavier fluid by 
#(,)(x, y, t ) .  For convenience in a parametric analysis for the various locations of 
the interface to  be considered in this study, a regular grid with a constant mesh 
is most desirable. As a result, the finite-difference method with a constant mesh 
size H is used, with linear interpolation for the curved boundaries. 

Let &), a vector, be the projection of the potential function on the free surface 
in the approximating finite-dimensional space and &l), &l), , . . ,t#) be the vector 
representations of the potential function in D, at consecutive levels of the 
grid downwards from the free surface. Let &) and #$) represent the potential 
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functions on the interface, and +f), +Lz’, . . . , +i(n2) represent the potential function 
in D, a t  consecutive grid levels downwards from the interface. With the condition 
at the container’s boundary taken into consideration, the algebraic system of 
equations approximating (1) and (2) may be written in the matrix form 

AF Al l  A12 
A 2 1  

. . . . . . . . . 
Am.m-1 A m ,  m A, 

BI Bll 6 1 2  

B21 B22 B23 . . . . . . . . . 
Bn, n-1 Bn, 5 

’ = 0, (19) 

where the A’s and B’s with different subscripts are constant matrices of dimen- 
sions compatible with that of the +’s, and the blanks in the global matrix denote 
zero entries. 

The approximate algebraic form of the free-surface condition (3) is 

+p = (I  -A)-’ +y, (20) 
where h = (H/g)a? 

The interface continuity conditions (4) and ( 5 )  can be reduced to  

where 6 = Pl/(PZ--PI)’ Y = P21Pl. 
After the use of (20) and (21) the matrix equation (19) can be rearranged 

to give 

-Ah A12 

. . . . . . . . . 
4 , m - 1  (Am,m + gi  A,) g2 A, 

g3BI (Bll+g4BI) B.l!2 

. . . . . . . . . 
B ,  n-2 Bn,n 

where gl, g2, gs and ga are functions of A: 

g,(4 = (W- 1)/g(&Y g2(4 = WJ/g(W, 
g3@) = A M 4 Y  g4(4 = (A&- 1 M 4 Y  } (23) 

g(A) = (1+y)hd-1, A;, = A1,+(l+h)-lAp 
Equation (22) has the form of the general eigenvalue problem given in (18). 

We shall thus write (22) in the compact notation 

N ( A ) +  = 0. (24) 
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This equation is solved by an iterative method (Yang 1975). For a given esti- 
mate of the eigenvalue A, we seek an improvement p = AA satisfying 

det (N(h + p ) )  = 0. 

p(h)  = - (tr (L-lPN’U-l))-l, 

(25) 

(26) 

p is obviously a funotion of A. This function can be expressed as 

where the matrices P, L and U are permutation, lower-triangular and upper- 
triangular matrices, respectively. They are the L U  decomposition (Forsythe 
& Moler 1967, p. 36) of N ( h )  such that N(A) = PTLU and 

”(A) = dN(A)/dA. 

tr ( ) denotes the trace of a matrix. 
The improved estimate of the eigenvalue is given by 

= h,+p(A,), k = 0,1 ,2 ,  ... . (27) 

The condition for and properties of convergence of this iteration procedure are 
known (Yang 1975). 

We are interested in only the fist (smallest) few eigenvalues. The first four 
eigenvalues and the associated eigenvectors were calculated and plotted in the 
form of contours of equal potential and the orthogonal set of streamlines. The 
streamlines were calculated from the Cauchy-Riemann conditions. A more 
accurate solution for the streamlines may be Dbtained from the formulation in 
terms of the stream function. The equi-potentials and streamlines for the first 
four modes are shown in figures 2 (a)-(d). 

It is noted that, for all four modes, the free-surface velocity is nearly horizontal. 
The largest amplitudes of the waves as well as the kinetic energy are concentrated 
about the interface. Since the amplitude of surface waves is small for low fie- 
quencies, we may approximate the free surface by a rigid surface. Such an 
approximation further simplifies the algebraic equation (19). Now, only the 
equations involving the interface contain the eigenvalue. If the stream function 
is used in the formulation, the differential system (6)-( 10) reduces to the approxi- 
mate algebraic representation 

Cll Cl, 
‘21 ‘22 ‘23 

. . . . . . . . . 
Cm, m-1 Cm, m CI 

D I  Dll DlZ 
D21 DZ2 DZ3 

. . . . . . . . . 
D ,  n-1 Dm, n 

where the C’s and b ’ s  are constant matrices and +ii), . . . , +g) are vectors repre- 
senting the stream function a t  different levels of the finite-difference grid in the 
domain D,. +I approximates the interface stream function and +f), . . . , +$) 
represent the stream function in the domain D,. 
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( ( i )  

FIGURE 2. Flow patterns for the f is t  four sloshing internal wave modes. The free surface 
is not assumed flat. The height of the interface is exaggerated. (a) First mode, 
a%/g = 0.0152; contour intervals for the stream function + and velocity potential q5 
0.1 throughout. ( b )  Second mode, aaa/g = 0.0465; contour intervals 0-1. (c )  Third mode, 
&a/g = 0.794; contour intervals 0.2. (d )  Fourth mode, a2a/g = 0.10843; contour inter- 
vrtls 0.2. 
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FIUURE 3. Results for aaa/g as a function of d/h. 

-, h = a; --- , 2h = a. 

Since the matrix equation (48) is block-tridiagonal and homogeneous, we may 
express in terms of +kl), +kl) in terms of +L(31), etc. Thus all the 

+p (i = 1,2,  ..., m) 

may be expressed in terms of +I. Similarly, +g) may be expressed in terms of 
+gLl, +ELl in terms of +gLz, etc. Thus all the +:?) (i = n, n- 1 , .  .., 1) may also 
be expressed in terms of +I. 

Finite-difference approximation of the interface conditions (9) and (10) leads to 

(29) E @ I  = h[Y(+, - +PI - (+%- +I)I, 
where E is a constant matrix. 

equation with the dimensions of +I can be written down: 
Since both +p) and +g) may be expressed in terms of +I, a single matrix 

E+I = hF+,, (30) 

where F is a composite matrix made up of the C’s and D’s. 
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The advantage of this approximate formulation is obvious. It involves small 
dimensions and a standard form of algebraic eigenvalue problem for which 
efficient subroutines are readily available in every major computing centre. As 
expected, the solutions differ little from those of the original problem with a free 
surface at low frequencies. The economy provided by this approximation en- 
abled an extended parametric analysis for various depth ratios of the two layers. 
The program developed here should be a very efficient tool for studying internal 
waves in superposed liquid layers in arbitrarily shaped containers. The fiequen- 
cies of the first four modes for a circular container for various ratios of the depths 
of the two layers are presented in figure 3 for two positions of the free surface. 

5. Results 
As mentioned before, we have considered the cases h = u and h = &a, with 

p2/p1 = 1-05. For each case the numerical calculation was carried out for several 
values of d/h from 0.10 to 0.90. The values of a2a/g are shown in figure 3, in 
which the curves were extrapolated from zero to 0-10 and from 0.90 to 1.00. 

We note that, if the Boussinesq approximation is used, approximate values 
of aza/g for other density ratios can be obtained from figure 3 by multiplying the 
values given therein by 21(pz-pl)/pz. 

We note that for the &st sloshing mode a%/q varies but little with h/u. 

This work has been jointly supported by the National Science Foundation and 
the Office of Naval Research. 
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